Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genomics ; 116(2): 110814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432499

RESUMO

Lactate is a glycolysis end product, and its levels are markedly associated with disease severity, morbidity, and mortality in sepsis. It modulates key functions of immune cells, including macrophages. In this investigation, transcriptomic analysis was performed using lactic acid, sodium lactate, and hydrochloric acid-stimulated mouse bone marrow-derived macrophages (iBMDM), respectively, to identify lactate-associated signaling pathways. After 24 h of stimulation, 896 differentially expressed genes (DEG) indicated were up-regulation, whereas 792 were down-regulated in the lactic acid group, in the sodium lactate group, 128 DEG were up-regulated, and 41 were down-regulated, and in the hydrochloric acid group, 499 DEG were up-regulated, and 285 were down-regulated. Subsequently, clinical samples were used to further verify the eight genes with significant differences, among which Tssk6, Ypel4, Elovl3, Trp53inp1, and Cfp were differentially expressed in patients with high lactic acid, indicating their possible involvement in lactic acid-induced inflammation and various physiological diseases caused by sepsis. However, elongation of very long chain fatty acids protein 3 (Elovl3) was negatively correlated with lactic acid content in patients. The results of this study provide a necessary reference for better understanding the transcriptomic changes caused by lactic acid and explain the potential role of high lactic acid in the regulation of macrophages in sepsis.


Assuntos
Ácido Láctico , Sepse , Animais , Camundongos , Humanos , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Lactato de Sódio , RNA Mensageiro , Ácido Clorídrico , Sepse/genética , Sepse/metabolismo , Macrófagos/metabolismo
2.
Colloids Surf B Biointerfaces ; 234: 113734, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181690

RESUMO

Metal-based nanomaterials have remarkable bactericidal effects; however, their toxicity cannot be disregarded. To address this concern, we developed a simple synthesis route for antibacterial catheters using metal-based nanomaterials to reduce toxicity while harnessing their excellent bactericidal properties. The grafting agent (3-aminopropyl)triethoxysilane (APTES) forms -NH2 groups on the catheter surface, onto which copper ions form a nanomaterial complex known as Cu2(OH)3(NO3) (defined as SA-Cu). The synthesized SA-Cu exhibited outstanding contact antibacterial effects, as observed through scanning electron microscopy (SEM), which revealed cell membrane crumbing and bacterial rupture on the catheter surface. Furthermore, SA-Cu exhibited excellent biosafety characteristics, as evidenced by the cell counting kit-8 (CCK-8) assay, which showed no significant cytotoxicity. SA-Cu demonstrated sustained antimicrobial capacity, with in vivo experiments demonstrating over 99% bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA) for two weeks. The transcriptome sequencing results suggested that SA-Cu may exert its bactericidal effects by interfering with histidine and purine metabolism in MRSA. This study presents a straightforward method for synthesizing antimicrobial silicone catheters containing copper nanomaterials using copper ions.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Nanoestruturas , Humanos , Cobre/farmacologia , Abscesso , Silicones , Antibacterianos/farmacologia , Cateteres , Íons
3.
ACS Omega ; 3(7): 8220-8225, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458959

RESUMO

A facile fabrication strategy of transparent and upconversion photoluminescent nylon 6 (PA6) nanofiber mats was developed based on PA6 nanofiber mats, carboxylic acid-functionalized upconversion nanoparticles (UCNP-COOH), and poly(methyl methacrylate) (PMMA) solution. UCNP-COOH were prepared by a solvothermal method, followed by the ligand exchange process. The electrospinning method and the spin-coating process were employed to combine PA6 nanofiber mats with UCNP-COOH and PMMA to introduce upconversion photoluminescent properties and transparency into the nanocomposite mats, respectively. The prepared UCNP-COOH/PA6/PMMA nanofiber mats are transparent and exhibit green emission, which are similar to UCNP-COOH when they were excited under 980 nm laser. The upconversion luminescent intensity of the functional nanofiber mats can be tailored by adjusting the weight fraction of UCNP-COOH as fillers. This facile strategy can be readily used to other types of intriguing nanocomposites for diverse applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...